Accuracy of Genome-Enabled Prediction in a Dairy Cattle Population using Different Cross-Validation Layouts
نویسندگان
چکیده
The impact of extent of genetic relatedness on accuracy of genome-enabled predictions was assessed using a dairy cattle population and alternative cross-validation (CV) strategies were compared. The CV layouts consisted of training and testing sets obtained from either random allocation of individuals (RAN) or from a kernel-based clustering of individuals using the additive relationship matrix, to obtain two subsets that were as unrelated as possible (UNREL), as well as a layout based on stratification by generation (GEN). The UNREL layout decreased the average genetic relationships between training and testing animals but produced similar accuracies to the RAN design, which were about 15% higher than in the GEN setting. Results indicate that the CV structure can have an important effect on the accuracy of whole-genome predictions. However, the connection between average genetic relationships across training and testing sets and the estimated predictive ability is not straightforward, and may depend also on the kind of relatedness that exists between the two subsets and on the heritability of the trait. For high heritability traits, close relatives such as parents and full-sibs make the greatest contributions to accuracy, which can be compensated by half-sibs or grandsires in the case of lack of close relatives. However, for the low heritability traits the inclusion of close relatives is crucial and including more relatives of various types in the training set tends to lead to greater accuracy. In practice, CV designs should resemble the intended use of the predictive models, e.g., within or between family predictions, or within or across generation predictions, such that estimation of predictive ability is consistent with the actual application to be considered.
منابع مشابه
Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملCross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction
Cross-validation of methods is an essential component of genome-enabled prediction of complex traits. We develop formulae for computing the predictions that would be obtained when one or several cases are removed in the training process, to become members of testing sets, but by running the model using all observations only once. Prediction methods to which the developments apply include least ...
متن کاملGenomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in ...
متن کاملA Function Accounting for Training Set Size and Marker Density to Model the Average Accuracy of Genomic Prediction
Prediction of genomic breeding values is of major practical relevance in dairy cattle breeding. Deterministic equations have been suggested to predict the accuracy of genomic breeding values in a given design which are based on training set size, reliability of phenotypes, and the number of independent chromosome segments ([Formula: see text]). The aim of our study was to find a general determi...
متن کاملAccuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle.
The aim of this study was to assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle. The 10,181 cattle in our study had real or imputed genotypes for 729,068 SNP although not all cattle were measured for all traits. Animals included Bos taurus, Brahman, composite, and crossbred animals. Genomic EBV (GEBV) we...
متن کامل